Substrate Oxidation by Indoleamine 2,3-Dioxygenase: EVIDENCE FOR A COMMON REACTION MECHANISM.
نویسندگان
چکیده
The kynurenine pathway is the major route of L-tryptophan (L-Trp) catabolism in biology, leading ultimately to the formation of NAD(+). The initial and rate-limiting step of the kynurenine pathway involves oxidation of L-Trp to N-formylkynurenine. This is an O2-dependent process and catalyzed by indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase. More than 60 years after these dioxygenase enzymes were first isolated (Kotake, Y., and Masayama, I. (1936) Z. Physiol. Chem. 243, 237-244), the mechanism of the reaction is not established. We examined the mechanism of substrate oxidation for a series of substituted tryptophan analogues by indoleamine 2,3-dioxygenase. We observed formation of a transient intermediate, assigned as a Compound II (ferryl) species, during oxidation of L-Trp, 1-methyl-L-Trp, and a number of other substrate analogues. The data are consistent with a common reaction mechanism for indoleamine 2,3-dioxygenase-catalyzed oxidation of tryptophan and other tryptophan analogues.
منابع مشابه
Indoleamine 2,3-Dioxygenase and Immunological Tolerance during Pregnancy
Indoleamine 2,3-dioxygenase (IDO), an enzyme involved in the catabolism of tryptophan, is expressed by a variety of cells and tissues such as macrophages, dendritic cells, cells of the endocrine system and by the placenta. IFN- γ is the main inducer of this enzyme. IDO acts as an important defense mechanism of innate immunity against pathogens. It also has tumor suppressive activity and prolong...
متن کاملCrystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase.
Human indoleamine 2,3-dioxygenase (IDO) catalyzes the cleavage of the pyrrol ring of L-Trp and incorporates both atoms of a molecule of oxygen (O2). Here we report on the x-ray crystal structure of human IDO, complexed with the ligand inhibitor 4-phenylimidazole and cyanide. The overall structure of IDO shows two alpha-helical domains with the heme between them. A264 of the flexible loop in the...
متن کاملMolecular basis for the substrate stereoselectivity in tryptophan dioxygenase.
Tryptophan dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) are the only two heme proteins that catalyze the oxidation reaction of tryptophan (Trp) to N-formylkynurenine. While human IDO is able to oxidize both L- and D-Trp, human TDO (hTDO) displays major specificity for L-Trp. In this work, we aim to interrogate the molecular basis for the substrate stereoselectivity of hTDO. Our previ...
متن کاملEvidence for a ferryl intermediate in a heme-based dioxygenase.
In contrast to the wide spectrum of cytochrome P450 monooxygenases, there are only 2 heme-based dioxygenases in humans: tryptophan dioxygenase (hTDO) and indoleamine 2,3-dioxygenase (hIDO). hTDO and hIDO catalyze the same oxidative ring cleavage reaction of L-tryptophan to N-formyl kynurenine, the initial and rate-limiting step of the kynurenine pathway. Despite immense interest, the mechanism ...
متن کاملExploring the mechanism of tryptophan 2,3-dioxygenase
The haem proteins TDO (tryptophan 2,3-dioxygenase) and IDO (indoleamine 2,3-dioxygenase) are specific and powerful oxidation catalysts that insert one molecule of dioxygen into L-tryptophan in the first and rate-limiting step in the kynurenine pathway. Recent crystallographic and biochemical analyses of TDO and IDO have greatly aided our understanding of the mechanisms employed by these enzymes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 290 52 شماره
صفحات -
تاریخ انتشار 2015